
A Frequency Compensated Clock for Precision Synchronization using IEEE
1588 Protocol and its Application to Ethernet

Sivaram Balasubramanian, Kendal R. Harris and Anatoly Moldovansky

Rockwell Automation

Abstract

In a distributed control system containing multiple clocks, individual clocks tend to drift
apart. Hence, individual clocks need to be corrected to synchronize and maintain time to required
accuracy. In this paper, we present a frequency compensated clock to achieve precision
synchronization amongst distributed clocks using IEEE 1588 protocol to exchange timing
information. Further, we explore its application to Ethernet.

1.0 Introduction

In a distributed control system containing multiple clocks, individual clocks tend to drift
apart due to instabilities inherent in source oscillators and environmental conditions such as
temperature, air circulation, mechanical stresses, vibration, aging etc. Hence, some kind of
correction is necessary to synchronize individual clocks to maintain the notion of global time,
which is accurate to some requisite clock resolution. The IEEE 1588 standard [1] for a precision
clock synchronization protocol for networked measurement and control system standardizes time
and defines several messages that can be used to distribute timing information, but leaves it to
implementation the means to achieve precision clock synchronization.

One important implementation and application specific issue is what to do with

distributed time. A simple solution is to snap to new time value when time distribution arrives by
setting the local clock to new value. In distributed control and in many other applications, this
simple solution is not practicable. For example, in distributed drive/motion control applications
snapping to new time value may break those applications. Therefore, it is necessary to manage
drifts and maintain time between time distributions. One way to achieve this is to use accurate
temperature compensated or oven controlled oscillators as clock source. However these
oscillators are expensive. Hence, a solution using inexpensive standard crystal oscillators is
preferable.

Figure 1 shows the clock drift phenomenon on a slave clock between time distribution

(Sync) messages from master clock. At time MasterSyncTimen-1 the master clock sends Sync
message to slave clock(s). The slave receives this message after a delay equal to transit time
from master to slave (MasterToSlaveDelay) at MasterClockTimen-1 and sets its clock such that

 SlaveClockTimen-1 = MasterClockTimen-1 = MasterSyncTimen-1 + MasterToSlaveDelay

 Where n denotes the Sync message count from master to slave.

 At time MasterSyncTimen the master sends next Sync message to slave clock. The slave
receives this message at MasterClockTimen, but the SlaveClockTimen has drifted apart by
SlaveClockDrift. Therefore

 MasterClockTimen = MasterSyncTimen + MasterToSlaveDelay

SlaveClockTimen = MasterSyncTimen + MasterToSlaveDelay + SlaveClockDrift

 Master clock Slave clock

Time Time

MasterSyncTimen-1

SlaveClockTimen-1

SlaveClockTimen

MasterClockTimen-1

MasterClockTimen

MasterSyncTimen

Sync

Sync

Figure 1: Timing Messages

 Therefore, the slave clock has to be corrected such that

1. The frequencies of master and slave clocks have to equal each other.
2. The discrepancy between values of MasterClockTime and SlaveClockTime at any

given instant should be eliminated or at least minimized.

The following sections present a simple but accurate, frequency compensated clock using

standard inexpensive crystal oscillators to achieve these two objectives.

2.0 Frequency Compensated Clock

 As shown in Figure 2, the frequency compensated clock is comprised of a p-bit clock
counter, a q-bit accumulator as high precision frequency divider and an r-bit addend register
holding frequency compensation value (FreqCompensationValue). All the constituents of
frequency compensated clock operate at the frequency of input oscillator (FreqOscillator). The

FreqCompensationValue contained in addend register is added to accumulator once every
1/FreqOscillator. The clock counter is incremented whenever the accumulator asserts an
overflow pulse signal. Therefore the nominal frequency at which the clock counter is
incremented is FreqClock and is determined by FreqCompensationValue.

p-bit Clock Counter

q-bit Accumulator

r-bit Addend Register

Message Detection &
Time Stamping Logic

Tx/Rx
Signals

Frequency Compensated
Clock

Frequency
Compensation

Value

Figure 2: Frequency Compensated Clock

 The ratio of FreqOscillator to FreqClock is a design constant chosen initially to be a
number greater than 1.0001, where 1.0001 corresponds to 0.01% oscillator stability. Though for
0.01% (+/-100 PPM) stability oscillator frequency drift rate may be an infinite precision real
number between 0.9999 and 1.0001, it is not possible to compensate in hardware for infinite
precision. Let CompensationPrecision be a constant number representing the highest precision
desired for frequency compensation, and SyncInterval be a number representing interval between
Sync messages in seconds. The following relationships can be used to determine the widths of
accumulator, clock counter and addend register that will provide adequate precision for
frequency compensation.

 FreqDivisionRatio = FreqOscillator / FrequencyClock
 CompensationPrecision <= 1 / (SyncInterval * FreqClock)
 2q >= FreqDivisionRatio / CompensationPrecision
 2r >= 2q / FreqDivisionRatio
 2p >= 2q

 For example, FreqOscillator is 50MHz, FreqClock is 40 MHz, FreqDivisionRatio is 1.25,
SyncInterval is 1 second, CompensationPrecision is 1x10-9, width of accumulator q is 32, width
of addend register r is 32 and width of clock counter p is 64 to provide a clock resolution of 25
nanoseconds.

 The accumulator-addend register pair implements a high precision frequency divider
whose accuracy is at least equal to CompensationPrecision. The accumulator-addend register
pair operate by emitting N clock cycles of width Floor(FreqDivisionRatio) / FreqOscillator
followed by a cycle with a width of Floor(FreqDivisionRatio+1) / FreqOscillator or
Floor(FreqDivisionRatio-1) / FreqOscillator as appropriate. Where Floor operator rounds down
real number to an integer and N is an integer determined by FreqCompensationValue.

3.0 Frequency Compensation Algorithm

 Initially the slave clock is set with a FreqCompensationValue0 as follows

 FreqCompensationValue0 = 2q / FreqDivisionRatio

 Let the MasterToSlaveDelay be set to zero initially and the algorithm described below be
applied. After a few Sync cycles, frequency lock will occur. Then the slave clock can determine
precise value for MasterToSlaveDelay and resynchronize with master using new value.

The following is a description of algorithm proper. At time MasterSyncTimen the master
sends a Sync message to slave clock. The slave receives this message when its local clock is
SlaveClockTimen and computes MasterClockTimen as

 MasterClockTimen = MasterSyncTimen + MasterToSlaveDelay

 The master clock count for current Sync cycle, MasterClockCountn is given by

 MasterClockCountn = MasterClockTimen - MasterClockTimen-1

 The slave clock count for current Sync cycle, SlaveClockCountn is given by

 SlaveClockCountn = SlaveClockTimen - SlaveClockTimen-1

 The difference between master and slave clock counts for current Sync cycle,
ClockDiffCountn is given by

 ClockDiffCountn = MasterClockTimen - SlaveClockTimen

 The frequency-scaling factor for slave clock, FreqScaleFactorn is given by

 FreqScaleFactorn = (MasterClockCountn + ClockDiffCountn) / SlaveClockCountn

 The frequency compensation value for addend register, FreqCompensationValuen is
given by

 FreqCompensationValuen = FreqScaleFactorn * FreqCompensationValuen-1

 Theoretical result of this algorithm is that at SlaveClockTimen+1, the frequencies of
master and slave clocks would lock, and differences between their clocks ClockDiffCountn+1
would be zero. In other words, this algorithm would achieve a lock in one Sync cycle. Therefore
the following statements are true with respect to this algorithm, assuming constant network
propagation delays and gradually changing operating conditions such as temperature:

1. When the clocks drift at a constant rate, the frequency and clock locks between
master and slave will be achieved in one Sync cycle and would stay locked after that.

2. When the clocks drift apart at a gradually changing drift rate over time, the slave
clock will track master clock very closely by locking frequencies/clock values in one
Sync cycle whenever clock drift is detected.

This algorithm has a self-correcting property. If for any reason the slave clocks set their

initial local clock values from master slightly incorrect, it will be corrected at a cost of couple of
more Sync cycles.

4.0 Implementation on Ethernet

 The frequency compensated clock was implemented on an FPGA with message detection
and time stamping logic monitoring media independent interface signals between network
transceiver and medium access controller for IEEE 802.3/Ethernet. An inexpensive standard
crystal oscillator with a frequency of 50MHz was used as input. The oscillator frequency was
divided down to a nominal clock frequency of 40MHz or 25ns clock resolution. The slave clock
was locked on to master clock with a deviation of +/-25ns most of the time and a worst case
deviation of +/-100ns was observed on a switched 100Mbps Ethernet with some background
traffic. The behavior was similar in the case of 100Mbps half-duplex mode network with
repeater.

 The accuracy of synchronization was largely limited by the random delay components
introduced by network transceivers on transmit/receive ends. With higher background traffic
switch delays will further limit accuracy and will necessitate some sort of filtering. In addition
random delays tend to increase the number of Sync cycles required to achieve lock. One
important requirement for frequency compensated clock is to have a source oscillator with good
short term stability for 1 sec, since it cannot compensate for that. The Allen deviation of many
standard crystal oscillators were found to be 50x10-9 for 1 second gate time and some were found
to be even better at couple of parts per billion. Hence the frequency compensated clock with
standard crystal oscillators can satisfy accuracy requirements for many applications.

6.0 Conclusions

 The frequency compensated clock provides a simple and accurate way to implement
IEEE 1588 standard for precision synchronization. It provides high accuracy with inexpensive

standard crystal oscillators. It maintains time and manages drift accurately even in the presence
of lost synchronization messages. It can be easily adapted for various networks and applications.

7.0 References

1. IEEE Std 1588-2002, IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, 8 November 2002.

2. Esker, Lawrence W., Low Deviation Synchronization Clock, U.S. Patent 6,236,277.
September 30, 1999.

3. Schossmaier Klaus, Schmid Ulrich, Horauer Martin, Loy Dietmar, Specification and
Implementation of the Universal time Coordinated Synchronization Unit (UTCSU),
Journal of Real-Time Systems, vol. 12, no.3, pp.295-327, May 1997.

	Abstract
	3.0 Frequency Compensation Algorithm
	4.0 Implementation on Ethernet
	6.0 Conclusions
	7.0 References

